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A B S T R A C T   

Test–retest reliability is essential for using resting-state functional magnetic resonance imaging (rs-fMRI) as a 
potential biomarker for Alzheimer's disease (AD), especially when monitoring longitudinal changes and treat
ment effects. In addition, test–retest variability itself might represent a feature of AD. Using 3.0 T rs-fMRI data 
from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we examined the long-term (1-year) 
test–retest reliability of resting-state networks (RSNs) in 31 healthy elderly subjects, 63 patients with mild 
cognitive impairment (MCI), and 17 patients with AD by applying temporal concatenation group independent 
component analysis and dual regression. The intraclass correlation coefficient estimates of RSN amplitudes 
ranged from 0.44 to 0.77 in healthy elderly subjects, from 0.31 to 0.62 in patients with MCI, and from − 0.06 to 
0.44 in patients with AD. The overall test–retest reliability of RSNs was lower in patients with MCI than in 
healthy elderly subjects, and was lower in patients with AD than in patients with MCI. The differences in the 
test–retest reliabilities were due to the RSN amplitudes rather than the RSN shapes. Head motion was not 
significantly different among the three groups of subjects. The results indicate that the test–retest stability of 
RSNs generally declines with progression to MCI and AD, mainly due to the RSN amplitudes rather than the RSN 
shapes. The test–retest instability in MCI and AD may reflect progressive neurofunctional alterations related to 
the pathology of AD.   

1. Introduction 

Resting-state functional magnetic resonance imaging (rs-fMRI) has 
been widely used to study the spontaneous fluctuations in brain activity 
in healthy individuals and in patients with a variety of neurological or 
psychiatric diseases, since it was first reported that correlated temporal 
dynamics of blood oxygen level-dependent (BOLD) responses were 
observed across the sensorimotor cortex, even in resting subjects [1]. 
Unlike task-based fMRI, rs-fMRI measures brain activity while the sub
ject is resting or in a task-negative state, and the spontaneous fluctua
tions in the BOLD signal are used to assess whole-brain functional 
networks and their interrelationships simultaneously without being 
restricted to one domain by a task. In addition, rs-fMRI is feasible in 
children and patients with dementia, who are unable to perform the 
tasks required in task-based fMRI. 

Alzheimer's disease (AD) is the most common cause of dementia in 
older adults. It is an irreversible, progressive neurodegenerative disor
der, in which amyloid plaques and neurofibrillary tangles accumulate in 
the brain, impairing axons, dendrites, and synapses [2]. Despite exten
sive efforts to develop new treatments for AD, there are currently no 
drugs that stop or inhibit its progression; currently available drugs 
temporarily slow the worsening of dementia symptoms and help prevent 
behavioral problems. To aid drug development and facilitate the treat
ment of AD, biomarkers are required that can help clinicians track the 
pathophysiological processes of AD and may temporally precede the 
development of the known biomarker, amyloid β peptides [3]. rs-fMRI is 
a candidate imaging biomarker that may bridge this gap because func
tional connectivity may reveal functional abnormalities before amyloid 
biomarkers accumulate to a pathologically abnormal level [3,4]. 

rs-fMRI studies in patients with AD have shown that decreased 
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connectivity affects the default mode network, a large-scale network of 
interacting brain regions that are active in a resting subject, including 
the posterior cingulate cortex and precuneus, the medial prefrontal 
cortex, and the angular gyrus [4–6]. In addition to AD, decreased con
nectivity in the default mode network is found in mild cognitive 
impairment (MCI), in unaffected carriers of familial AD, and in subjects 
with subjective cognitive complaints. In contrast, increased connectivity 

in the default mode network is found in healthy subjects with the APOE4 
genotype, a risk factor for AD, possibly as a compensatory response to 
early subclinical damage [4]. Studies of other networks have yielded 
mixed and heterogeneous results [6]. The other networks affected by AD 
progression include the dorsal attention, executive control, salience, and 
sensorimotor networks [5]. 

Adequate test–retest reliability is essential for using neuroimaging as 

Table 1 
Subject characteristics (mean ± standard deviation [range]).   

HE MCI AD pa 

n 31 63 17  
Sex    0.27 

Female 18 27 10  
Male 13 36 7  

Age (y) 76.0 ± 7.2 (64.1–94.7) 71.9 ± 7.0 (56.7–88.7) 74.3 ± 8.1 (56.0–86.6) 0.04 
Education (y) 16.1 ± 2.3 (12− 20) 16.4 ± 2.5 (11− 20) 15.1 ± 2.5 (12–20) 0.17 
MMSE 28.9 ± 1.2 (26–30) 27.9 ± 1.7 (24–30) 22.7 ± 2.3 (19–26) 0.00 
Scan interval (y) 1.05 ± 0.06 (0.92–1.22) 1.03 ± 0.05 (0.90–1.16) 1.03 ± 0.07 (0.89–1.19) 0.26 

HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease; MMSE, Mini Mental State Examination. 
a χ2 test (for categorical variables) or Kruskal–Wallis test (for numerical variables). 

Fig. 1. Resting-state networks obtained by temporal concatenation group independent component analysis, including the sensorimotor, executive control, visual, 
default mode, dorsal attention, and salience networks. The maps are thresholded at |z| > 3. IC, independent component. 
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a potential biomarker for AD, especially when monitoring the longitu
dinal changes of AD and the effects of treatments. Previous studies have 
evaluated the reliabilities of volumetric T1-weighted imaging [7–15], 
diffusion imaging [16–20], and rs-fMRI [21–25]; however, few studies 
have evaluated the test–retest reliability of rs-fMRI in healthy elderly 
subjects [26–30], patients with MCI [31,32], and patients with AD [33]. 

Using rs-fMRI data obtained from the Alzheimer's Disease Neuro
imaging Initiative (ADNI) database, we examined the long-term (1-year) 
test–retest reliability of resting-state networks (RSNs) in healthy elderly 
subjects, patients with MCI, and patients with AD using temporal 
concatenation group independent component analysis (ICA) and dual 
regression [34]. 

2. Materials and Methods 

2.1. Subjects 

The data used in this study were obtained from the ADNI database 
(available at http://adni.loni.usc.edu). The ADNI was launched in 2003 
as a public–private partnership, led by the Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI was to test whether 
serial MRI, positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com
bined to measure the progression of MCI and early AD. The ADNI was 
approved by the institutional review boards of all participating sites. 
Written informed consent was obtained from all participants. 

Table 2 
Intraclass correlation coefficient estimates of the standard deviations of subject-specific time courses generated by dual regression, representing the amplitudes of 
resting-state networks.   

Overall (95% CI) HE (95% CI) MCI (95% CI) AD (95% CI) 

IC 5 (sensorimotor) 0.50 (0.35–0.63) 0.77 (0.57–0.88) 0.42 (0.20–0.61) 0.28 (− 0.25–0.67) 
IC 6 (executive control) 0.29 (0.12–0.45) 0.47 (0.15–0.70) 0.33 (0.10–0.53) − 0.05 (− 0.55–0.45) 
IC 8 (visual) 0.45 (0.29–0.58) 0.63 (0.36–0.80) 0.43 (0.21–0.61) − 0.04 (− 0.53–0.44) 
IC 9 (default mode) 0.53 (0.38–0.65) 0.44 (0.11–0.68) 0.62 (0.44–0.75) 0.27 (− 0.24–0.66) 
IC 13 (dorsal attention) 0.36 (0.19–0.51) 0.64 (0.37–0.81) 0.31 (0.07–0.51) − 0.06 (− 0.53–0.43) 
IC 15 (salience) 0.50 (0.33–0.63) 0.65 (0.39–0.81) 0.44 (0.21–0.63) 0.44 (− 0.00–0.75) 

IC, independent component; CI, confidence interval; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 

Table 3 
Within-subject coefficient of variation estimates of the standard deviations of subject-specific time courses generated by dual regression, representing the amplitudes of 
resting-state networks.   

Overall (95% CI) HE (95% CI) MCI (95% CI) AD (95% CI) 

IC 5 (sensorimotor) 25.3% (21.7–28.4%) 18.0% (13.7–21.4%) 27.1% (22.2–31.2%) 29.4% (16.9–38.0%) 
IC 6 (executive control) 28.5% (23.6–32.6%) 24.3% (12.4–32.0%) 28.9% (23.1–33.7%) 33.7% (13.8–45.6%) 
IC 8 (visual) 26.1% (22.4–29.4%) 23.6% (17.6–28.3%) 25.7% (20.6–29.9%) 31.7% (17.9–41.1%) 
IC 9 (default mode) 16.7% (13.7–19.2%) 15.2% (11.0–18.4%) 16.7% (13.0–19.8%) 19.1% (0.0–27.3%) 
IC 13 (dorsal attention) 19.8% (16.5–22.7%) 14.4% (9.6–18.0%) 20.9% (16.4–24.6%) 23.9% (11.9–31.6%) 
IC 15 (salience) 17.8% (15.6–19.8%) 15.4% (10.7–19.0%) 19.3% (16.4–21.7%) 16.4% (9.0–21.3%) 

IC, independent component; CI, confidence interval; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 

Table 4 
Means and standard deviations (SDs) of the standard deviations of subject-specific time courses generated by dual regression, representing the amplitudes of resting- 
state networks.   

Screening At 1 year 

HE (SD) MCI (SD) AD (SD) HE (SD) MCI (SD) AD (SD) 

IC 5 (sensorimotor) 3.70 (1.57) 3.88 (1.62) 3.91 (1.66) 4.10 (1.79) 4.19 (1.52) 3.96 (1.67) 
IC 6 (executive control) 4.12 (1.98) 4.10 (1.52) 4.96 (2.69) 4.51 (2.33) 4.75 (2.25) 4.89 (2.30) 
IC 8 (visual) 3.58 (1.97) 3.40 (1.34) 3.17 (0.85) 3.69 (1.47) 3.63 (1.35) 3.48 (1.72) 
IC 9 (default mode) 3.32 (0.75) 3.51 (1.02) 3.22 (0.69) 3.48 (0.77) 3.49 (1.00) 3.43 (1.23) 
IC 13 (dorsal attention) 3.20 (0.79) 3.45 (1.03) 3.23 (0.56) 3.40 (1.21) 3.56 (1.02) 3.46 (1.15) 
IC 15 (salience) 3.07 (0.90) 2.97 (0.76) 2.96 (0.62) 3.18 (0.83) 3.32 (0.83) 3.29 (0.96) 

IC, independent component; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 

Table 5 
Within-subject standard deviations of the standard deviations of subject-specific time courses generated by dual regression, representing the amplitudes of resting-state 
networks.   

HE MCI AD 

IC 5 (sensorimotor) 0.82 1.20 1.38 
IC 6 (executive control) 1.57 1.62 2.48 
IC 8 (visual) 1.05 1.02 1.36 
IC 9 (default mode) 0.57 0.62 0.84 
IC 13 (dorsal attention) 0.62 0.85 0.91 
IC 15 (salience) 0.51 0.62 0.62 

IC, independent component; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 
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Fig. 2. Voxel-wise intraclass correlation coefficient (ICC) maps of subject-specific spatial maps with variance normalization of the subject-specific time courses 
during dual regression, representing resting-state network (RSN) shapes and amplitudes. The RSN masks are applied at a threshold of z > 3. IC, independent 
component; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 

H. Takao et al.                                                                                                                                                                                                                                  



Magnetic Resonance Imaging 82 (2021) 55–73

59

Fig. 2. (continued). 

H. Takao et al.                                                                                                                                                                                                                                  



Magnetic Resonance Imaging 82 (2021) 55–73

60

The present study used data selected from the ADNI 2 database 
comprising subjects with rs-fMRI data from screening and 1 year later. 
Data with different scan parameters or poor image quality (by visual 
inspection with reference to quality scores by ADNI quality control at 
Mayo Clinic) were excluded. AD was diagnosed according to the Na
tional Institute of Neurological and Communicative Disorders and 
Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS- 
ADRDA) criteria, and MCI was diagnosed according to the Mayo Clinic 
criteria. For details, please refer to the ADNI 2 protocol. A total of 111 
subjects (31 healthy control subjects [18 females and 13 males], 63 
patients with MCI [27 females and 36 males], and 17 patients with AD 
[10 females and 7 males]) were included in the present study (Table 1). 
The mean age (range) at screening was 73.4 ± 7.4 years (healthy control 
subjects, 76.0 ± 7.2 years [64.1–94.7 years]; patients with MCI, 71.9 ±
7.0 years [56.7–88.7 years]; patients with AD, 74.3 ± 8.1 years 
[56.0–86.6 years]). The mean scan interval (range) was 1.04 ± 0.06 
years (healthy control subjects, 1.05 ± 0.06 years [0.92–1.22 years]; 
patients with MCI, 1.03 ± 0.05 years [0.90–1.16 years]; patients with 
AD, 1.03 ± 0.07 years [0.89–1.19 years]). 

2.2. Imaging Data Acquisition 

MR data were obtained on 3.0 T Philips scanners at multiple sites 
using the same ADNI 3.0 T imaging protocol. Various models of scanners 
were used in the ADNI (for details, please refer to http://adni.loni.usc. 
edu), but each subject underwent scans at screening and follow-up on 
the same scanner. 

The rs-fMR images were acquired using a single-shot gradient-echo 
echo-planar sequence in 48 axial slices (repetition time = 3000 ms; echo 
time = 30 ms; flip angle = 80◦; field of view = 212 × 199 mm; slice 
thickness = 3.31 mm with no gap; acquisition matrix = 64 × 59; image 
matrix = 64 × 64; reconstructed voxel size = 3.31 × 3.31 × 3.31 mm). A 
total of 140 volumes were acquired with a scan time of 7 min. The 
subjects were instructed to keep their eyes open during imaging. 

Structural T1-weighted images were acquired using a three- 
dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) 
sequence in 170 sagittal slices (repetition time = 6.8 ms; echo time =
3.1 ms; inversion time = 900 ms; flip angle = 9◦; field of view = 256 ×
240 mm; slice thickness = 1.2 mm with no gap; acquisition matrix =
256 × 240; image matrix = 256 × 256; reconstructed voxel size = 1.0 ×
1.0 × 1.2 mm). The MP-RAGE images were corrected for intensity non- 
uniformity using the non-parametric non-uniform intensity normaliza
tion algorithm N3 [35–37]. 

2.3. Image Processing 

The rs-fMR images were mainly processed using FSL (FMRIB Soft
ware Library) 5.0.9 software (http://www.fmrib.ox.ac.uk/fsl; devel
oped at the Oxford Centre for Functional MRI of the Brain, Nuffield 
Department of Clinical Neurosciences, John Radcliffe Hospital, Uni
versity of Oxford, Oxford, UK) [38] and MATLAB 9.1 (Mathworks, 
Sherborn, MA). 

Fig. 2. (continued). 
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2.3.1. Preprocessing 
The images were preprocessed as follows: the first four volumes were 

discarded due to magnetization instability; motion correction using 
MCFLIRT [39]; non-brain removal using a brain extraction tool (BET) 
[40]; spatial smoothing using a Gaussian kernel of full width at half 
maximum (FWHM) of 5 mm; grand-mean intensity normalization of the 
entire four-dimensional (4D) dataset by a single multiplicative factor; 
and high-pass temporal filtering (Gaussian-weighted least-squares 
straight line fitting, with sigma = 50 s). Briefly, spatial normalization 
involved the following steps: co-registration to high-resolution struc
tural T1-weighted images by boundary-based registration (BBR) [41] 
using epi_reg; registration from high-resolution structural to standard 
space using the FMRIB's linear image registration tool (FLIRT) [39], 
further improved by the FMRIB's nonlinear registration tool (FNIRT) 
[38]; creation of a custom echo-planar image template; and registration 
to the custom echo-planar image template using FNIRT. The final 
resampled voxel size was 2 × 2 × 2 mm. 

2.3.2. ICA 
Temporal concatenation group ICA was carried out using probabi

listic ICA [42], as implemented in MELODIC (multivariate exploratory 
linear decomposition into independent components) 3.14. The input 
data were preprocessed as follows: masking of non-brain voxels; voxel- 

wise de-meaning of the data; and normalization of the voxel-wise vari
ance. The preprocessed data were whitened and projected into a 20- 
dimensional subspace [43] using principal component analysis. The 
whitened observations were decomposed into sets of vectors describing 
signal variation across the temporal (time courses) and spatial (maps) 
domains by optimizing for non-Gaussian spatial source distributions 
using a fixed-point iteration technique [44]. Estimated component maps 
were divided by the standard deviation (SD) of the residual noise and 
thresholded by fitting a mixture model to the intensity histogram [42]. 

2.3.3. Dual Regression 
The spatial maps derived from group ICA were used to generate 

subject-specific spatial maps with associated time courses by applying 
dual regression [34]. First, for each subject, the group-level spatial maps 
were regressed (as spatial regressors in a multiple regression) into the 
subject's 4D space–time dataset. This resulted in a set of subject-specific 
time courses, one per group-level spatial map. Next, the time courses 
were regressed (as temporal regressors in a multiple regression) into the 
same 4D dataset, resulting in a set of subject-specific spatial maps, one 
per group-level spatial map. Dual regression was performed with and 
without variance normalization of the time courses created by spatial 
regression. 

Fig. 2. (continued). 
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2.3.4. Measurement of Head Motion 
The mean absolute and relative displacements calculated by 

MCFLIRT during motion correction were used to estimate head motion 
during the scans. 

2.4. Statistical Analysis 

The SD of subject-specific time courses generated by dual regression 
represents the RSN amplitude. Intraclass correlation coefficient (ICC) 
estimates with 95% confidence intervals (CIs) were calculated for the 
test–retest reliability based on a single-measurement, absolute-agree
ment, two-way mixed-effects model [45,46] using SPSS Statistics 22 
(IBM Corporation, Armonk, NY). Estimates of the within-subject coef
ficient of variation (CV) with 95% CIs were calculated based on the root 
mean square method using Excel 2016 (Microsoft Corporation, Red
mond, WA), as well as means, SDs, and within-subject SDs. 

In addition, the ICC was calculated for each voxel in subject-specific 
spatial maps (both with and without variance normalization of the 
subject-specific time courses during dual regression) based on a single- 
measurement, absolute-agreement, two-way mixed-effects model 
[45,46] using MATLAB 9.1 as follows: 

ICC =
MSR − MSE

MSR + (k − 1)MSE + k
n (MSC − MSE)

where 

MSR (mean square for rows) =
SSR

n − 1
,

MSC (mean square for columns) =
SSC

k − 1
,

MSE (mean square for error) =
SSE

(n − 1)(k − 1)
,

SST (total sum of squares) =
∑

x2
T −

(
∑

xT)
2

N
,

SSR (sum of squares for rows) =
∑n

i

(
∑

xi)
2

k
−
(
∑

xT)
2

N
,

SSC (sum of squares for columns) =
∑k

j

( ∑
xj
)2

n
−
(
∑

xT)
2

N
,

Fig. 2. (continued). 
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SSE (sum of squares for error) = SST − SSR − SSC,

∑
xT =

∑n

i

∑k

j
xij,

∑
x2

T =
∑n

i

∑k

j
x2

ij,

N = n× k, n = number of subjects (rows), k

= number of measurements (columns) (here 2)

The subject-specific spatial maps with variance normalization of the 
subject-specific time courses during dual regression represent both RSN 
shapes and amplitudes, while the subject-specific spatial maps without 
variance normalization of the subject-specific time courses during dual 
regression represent only RSN shapes [34]. 

Histogram analysis was performed for each ICC map with a histo
gram bin width of 0.02 and a range of − 1.0 to 1.0 within a mask for that 
particular RSN at a threshold of z > 3. 

Finally, to evaluate the effect of head motion on test–retest reli
ability, we used 2 × 3 mixed analysis of variance (ANOVA) to compare 
the effects of scan (a within-subject factor) and diagnosis (a between- 
subject factor) on mean absolute and relative displacements (calcu
lated by MCFLIRT) using SPSS Statistics 22. 

3. Results 

3.1. ICA Maps 

Fig. 1 shows six RSNs obtained from the temporal concatenation 
group ICA, including the sensorimotor, executive control, visual, default 
mode, dorsal attention, and salience networks. 

3.2. Test–Retest Reliability of the Amplitudes of Subject-specific Time 
Courses 

Table 2 shows the ICC estimates with 95% CIs for the SDs of the 
subject-specific time courses generated by dual regression, representing 
RSN amplitudes. Overall, the ICCs were lower in patients with MCI than 
in healthy control subjects (except for IC 9 [default mode network]), and 
were lower in patients with AD than in patients with MCI. The ICC es
timates ranged from 0.44 to 0.77 in healthy control subjects, from 0.31 
to 0.62 in patients with MCI, and from − 0.06 to 0.44 in patients with 
AD. 

Table 3 shows the within-subject CV estimates with 95% CIs for the 
SDs of the subject-specific time courses generated by dual regression. 
The CVs were higher in patients with MCI than in healthy control sub
jects, and were higher in patients with AD than in patients with MCI 

Fig. 2. (continued). 
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Fig. 3. Histograms (frequency polygons) of voxel-wise intraclass correlation coefficient (ICC) maps of subject-specific spatial maps with variance normalization of 
the subject-specific time courses during dual regression, representing resting-state network shapes and amplitudes. IC, independent component; HE, healthy elderly; 
MCI, mild cognitive impairment; AD, Alzheimer's disease. 

Table 6 
Peaks in the histograms of intraclass correlation coefficient maps of subject-specific spatial maps with variance normalization of the subject-specific time courses 
during dual regression, representing resting-state network shapes and amplitudes.   

Overall HE MCI AD 

IC 5 (sensorimotor) 0.38–0.40 0.54–0.56 0.36–0.38 0.32–0.34 
IC 6 (executive control) 0.18–0.20 0.16–0.18 0.20–0.22 0.18–0.20 
IC 8 (visual) 0.38–0.40 0.50–0.52 0.38–0.40 0.20–0.22 
IC 9 (default mode) 0.50–0.52 0.52–0.54 0.54–0.56 0.32–0.34 
IC 13 (dorsal attention) 0.38–0.40 0.46–0.48 0.40–0.42 0.32–0.34 
IC 15 (salience) 0.32–0.34 0.46–0.48 0.30–0.32 0.34–0.36 

IC, independent component; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 
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Fig. 4. Voxel-wise intraclass correlation coefficient (ICC) maps of subject-specific spatial maps without variance normalization of the subject-specific time courses 
during dual regression, representing resting-state network (RSN) shapes. The RSN masks are applied at a threshold of z > 3. IC, independent component; HE, healthy 
elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 
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Fig. 4. (continued). 
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Fig. 4. (continued). 
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(except for IC 15 [salience network]). The CVs ranged from 14.4% to 
24.3% in healthy control subjects, from 16.7% to 28.9% in patients with 
MCI, and from 16.4% to 33.7% in patients with AD. 

Table 4 shows the means and SDs for the SDs of the subject-specific 
time courses generated by dual regression. Table 5 shows the within- 
subject SDs for the SDs of the subject-specific time courses generated 
by dual regression. 

3.3. Voxel-wise Test–Retest Reliability of Subject-specific Spatial Maps 

Fig. 2 shows the voxel-wise ICC maps of subject-specific spatial maps 
with variance normalization of the subject-specific time courses during 
dual regression, representing RSN shapes and amplitudes [34]. Fig. 3 
and Table 6 show the results of histogram analysis (frequency polygons 
and histogram peaks) of the ICC maps. Overall, the histogram peaks 
were lower in patients with MCI than in healthy control subjects (except 
for IC 6 [executive control network] and IC 9 [default mode network]), 
and were lower in patients with AD than in patients with MCI (except for 
IC15 [salience network]). 

Fig. 4 shows the voxel-wise ICC maps of subject-specific spatial maps 
without variance normalization of the subject-specific time courses 
during dual regression, representing RSN shapes [34]. Fig. 5 and Table 7 
show the results of histogram analysis (frequency polygons and histo
gram peaks) of the ICC maps. Overall, there were small differences in the 
histograms among healthy control subjects, patients with MCI, and 

patients with AD relative to the ICC maps of subject-specific spatial maps 
with variance normalization of the subject-specific time courses. 

3.4. Head Motion 

Fig. 6 shows the mean absolute and relative displacements, which 
represent head motion during scanning. There were no significant main 
effects of scan (F(1, 108) = 0.17, p = 0.68) or diagnosis (F(2, 108) = 0.85, p 
= 0.43) on the mean absolute displacement. Furthermore, there was no 
significant interaction of scan × diagnosis (F(2, 108) = 0.15, p = 0.86). At 
the screening scan, the mean absolute displacements were 0.20 ± 0.10, 
0.18 ± 0.09, and 0.19 ± 0.08 mm for healthy control subjects, patients 
with MCI, and patients with AD, respectively. At 1 year, the corre
sponding values were 0.21 ± 0.22, 0.18 ± 0.09, and 0.21 ± 0.10 mm, 
respectively. 

For the mean relative displacement, there was no significant main 
effect of diagnosis (F(2, 108) = 0.16, p = 0.85) but a significant main effect 
of scan (F(1, 108) = 4.96, p = 0.03). There was no significant interaction 
of scan × diagnosis (F(2, 108) = 1.29, p = 0.28). At the screening scan, the 
mean relative displacements were 0.14 ± 0.07, 0.13 ± 0.07, and 0.13 ±
0.05 mm for healthy control subjects, patients with MCI, and patients 
with AD, respectively. At 1 year, the corresponding values were 0.14 ±
0.07, 0.15 ± 0.08, and 0.16 ± 0.08 mm, respectively. 

Fig. 4. (continued). 
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4. Discussion 

In the present study, we examined the long-term (1-year) test–retest 
reliability of RSNs in healthy elderly subjects, patients with MCI, and 
patients with AD using temporal concatenation group ICA and dual 
regression. The test–retest reliability was generally lower in patients 
with MCI than in healthy elderly subjects, and was lower in patients with 
AD than in patients with MCI. The results indicate that the differences in 
test–retest reliability of RSNs among these three groups were mainly due 
to the differences in the test–retest reliability of RSN amplitudes rather 
than those of RSN shapes. 

The results of the present study suggest that test–retest stability of 
RSNs declines with progression to MCI and to AD, even in regions 
relatively unaffected until late in the disease. The test–retest variability 
of RSN shapes was almost the same among healthy elderly subjects, 
patients with MCI, and patients with AD, whereas the test–retest sta
bility of RSN amplitudes generally declined with progression to MCI and 
to AD. This indicates that the test–retest variability of functional con
nectivity between regions of each RSN is relatively not different among 
healthy elderly, MCI, and AD, and that disease progression affects the 
test–retest variability of overall functional connectivity of the RSN. 

4.1. Test–Retest Reliability of RSNs in MCI and AD 

Although previous studies have evaluated the test–retest reliability 

of rs-fMRI, mainly in young to middle-aged healthy subjects [21–25], 
few studies have focused on healthy elderly subjects [26–30], patients 
with MCI [31,32], or patients with AD [33]. 

Blautzik et al. [32] investigated the long-term (approximately 13–16 
months) test–retest reliability of RSNs in 12 healthy control subjects 
(mean age, 67.8 ± 7.3 years [range, 59–83 years]) and 13 patients with 
amnestic MCI (mean age, 72.8 ± 7.3 years [range, 60–88 years]) using 
3.0 T MRI, with temporal concatenation group ICA and dual regression. 
The test–retest reliability of each RSN was determined by calculating the 
voxel-wise ICCs and was expressed as the most frequent ICC (“modal 
ICC”). The overall test–retest reliability of RSNs was higher in the 
healthy control group (mean “modal ICC”, 0.52 [range, 0.33–0.65]) 
than in the MCI group (mean “modal ICC”, 0.38 [range, 0.23–0.58]). 
The RSNs were most reliable in the healthy control group and were 
associated with sensory and motor as well as higher-order cognitive and 
the default mode function. The authors concluded that stable RSNs may 
represent healthy aging, while decreased RSN reliability may indicate 
progressive neurofunctional alterations before the manifestation of 
clinical symptoms. 

Conwell et al. [31] investigated the short-term (approximately 2 
weeks) test–retest reliability of three memory-related RSNs (default 
mode, salience, and executive control networks) in 15 young subjects 
(mean age, 24.4 ± 2.8 years), 15 healthy senior subjects (mean age, 
67.3 ± 8.1 years), and 15 patients with MCI positive for biomarkers 
suggestive of prodromal AD (mean age, 71.1 ± 6.0 years) using 3.0 T 

Fig. 4. (continued). 
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MRI, with temporal concatenation group ICA and back reconstruction 
(GICA3). The test–retest reliability was evaluated by voxel-wise ICCs, in 
which the voxel-wise time series were used to calculate ICCs within the 
RSNs. The test–retest reliability of RSNs was generally higher in the 
young subjects (mean ICC, 0.40–0.53) than in the healthy senior subjects 
(mean ICC, 0.35–0.46) and patients with MCI (mean ICC, 0.34–0.42). 

In the present study, we examined the 1-year test–retest reliability of 
RSNs in 31 healthy elderly subjects, 63 patients with MCI, and 17 pa
tients with AD using 3.0 T ADNI 2 data, with temporal concatenation 
group ICA and dual regression. Overall, the test–retest reliability was 
lower in patients with AD and higher in healthy elderly subjects. The 
test–retest reliability of RSNs generally declined with progression to MCI 
and to AD, and the differences in the test–retest reliability of RSNs were 
mainly due to the RSN amplitudes rather than the RSN shapes. 

4.2. Factors Affecting the Test–Retest Reliability of RSNs 

Neural and non-neural factors may contribute to the intrasubject 
variability in resting-state functional connectivity. Functional connec
tivity is not static, and the connection strengths vary during a single 
imaging session at rest and between sessions, and between different 
cognitive tasks [47]. Non-neural factors that may affect intrasubject 
variability of resting-state functional connectivity include scan condi
tions, head motion, physiological noise, and data analysis/standardi
zation strategies [48]. Non-neural factors that contribute to the BOLD 
time series include thermal noise inherent to the electrical circuits used 
for MR signal reception, instrument drift, artifact signals due to 

hardware instabilities, and signal changes due to head motion, as well as 
various non-neural physiological factors like cardiac and respiratory 
noise, changes in the arterial CO2 concentration associated with varying 
respiration rates, vasomotion, and changes in blood pressure and cere
bral autoregulation [49,50]. 

Because the present study included elderly subjects and patients with 
MCI or AD, head motion could be a non-neural factor most affecting the 
test–retest reliability of RSNs; however, head motion was generally 
similar among the three groups of subjects. Thus, the test–retest insta
bility in patients with MCI and AD may reflect progressive neurofunc
tional alterations related to AD pathology. 

4.3. Limitations 

The present study had several limitations. First, this study used rs- 
fMRI data with the interval of 1 year to evaluate the long-term 
test–retest reliability of RSNs. The changes in non-neuronal factors 
other than head motion may affect intrasubject variability of resting- 
state functional connectivity. Second, test–retest variability of RSNs 
may differ between MCI patients with and without conversion to de
mentia. It is an interesting topic, but somewhat beyond the scope of this 
study. Finally, this study did not evaluate the effect of brain atrophy on 
the long-term test–retest reliability of RSNs. It is well known that pa
tients with Alzheimer's disease have accelerated brain atrophy. Brain 
atrophy occurs earliest in the medial temporal lobe (hippocampus and 
entorhinal cortex) and subsequently extends along a temporal–par
ietal–frontal trajectory. Sensorimotor and visual cortices are unaffected 

Fig. 4. (continued). 
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Fig. 5. Histograms (frequency polygons) of voxel-wise intraclass correlation coefficient (ICC) maps of subject-specific spatial maps without variance normalization of 
the subject-specific time courses during dual regression, representing resting-state network shapes. IC, independent component; HE, healthy elderly; MCI, mild 
cognitive impairment; AD, Alzheimer's disease. 

Table 7 
Peaks in the histograms of intraclass correlation coefficient maps of subject-specific spatial maps without variance normalization of the subject-specific time courses 
during dual regression, representing resting-state network shapes.   

Overall HE MCI AD 

IC 5 (sensorimotor) 0.30–0.32 0.30–0.32 0.26–0.28 0.28–0.30 
IC 6 (executive control) 0.24–0.26 0.20–0.22 0.24–0.26 0.26–0.28 
IC 8 (visual) 0.40–0.42 0.44–0.46 0.40–0.42 0.40–0.42 
IC 9 (default mode) 0.50–0.52 0.56–0.58 0.54–0.56 0.44–0.46 
IC 13 (dorsal attention) 0.44–0.46 0.48–0.50 0.44–0.46 0.44–0.46 
IC 15 (salience) 0.30–0.32 0.30–0.32 0.26–0.28 0.36–0.38 

IC, independent component; HE, healthy elderly; MCI, mild cognitive impairment; AD, Alzheimer's disease. 
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until late in the disease. Accelerated brain atrophy may have the po
tential to affect the test–retest reliability of RSNs; however, this study 
showed a decline in the test–retest stability of RSNs with progression to 
MCI and to AD, even in regions spared until late in the disease. 

5. Conclusions 

In this study, we examined the long-term (1-year) test–retest reli
ability of RSNs in healthy elderly subjects, patients with MCI, and pa
tients with AD. Our results indicate that the test–retest stability of RSNs 
generally declines with progression to MCI and to AD, and the differ
ences in test–retest reliability of RSNs are likely due to the RSN ampli
tudes rather than the RSN shapes. The test–retest instability in MCI and 
AD may reflect progressive neurofunctional alterations due to the pa
thology of AD. 
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